Simulation of Temperature Distribution of Tubular Solid Oxide Electrolysis Cell
نویسندگان
چکیده
منابع مشابه
Steam Electrolysis Using a Microtubular Solid Oxide Fuel Cell
Reversible operation of a microtubular solid oxide fuel cell SOFC with high electrochemical efficiency is reported. These devices can ideally produce hydrogen from electricity and steam solid oxide electrolyser SOE and then use the stored hydrogen to generate electricity and heat SOFC , acting as a storage device for the electrical energy. A fuel-electrode-supported Ni–yttriastabilized zirconia...
متن کاملModeling the Performance of a Tubular Solid Oxide Fuel Cell
In this paper, we develop two computational models for the electrical performance of the tubular solid oxide fuel cell designed by Siemens Westinghouse Corporation. The first model makes simplifying assumptions for activation and concentration polarizations and obtains an analytical solution. In the second procedure, we allow the polarizations to vary with the current density and solve the equa...
متن کاملSimulation of a Solid Oxide Fuel Cell with External Steam Methane Reforming and Bypass
Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. The eligibility of a combined heat and power (CHP) system has been investigated as a new power generation methode, in this study. Natural gas fueled SOFC power systems via methane steam reforming (MSR) yield electrical conversion efficiencies exceeding 50% and...
متن کاملA New Sensitivity Study of Thermal Stress Distribution for a Planar Solid Oxide Fuel Cell
Converting chemical energy into electricity is done by an electro-chemical device known as a fuel cell. Thermal stress is caused at high operating temperature between 700 oC to 1000 oC of SOFC. Thermal stress causes gas escape, structure variability, crack initiation, crack propagation, and cease operation of the SOFC before its lifetime. The aim of this study is to presen...
متن کاملChemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell
A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials. The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEJ Transactions on Power and Energy
سال: 1996
ISSN: 0385-4213,1348-8147
DOI: 10.1541/ieejpes1990.116.8_918